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Abstract

We consider the problem of minimizing the time to approach and land near a target
radio beacon at an unknown location with an Unmanned Aerial Vehicle (UAV). We
show that a cone-like region exists above the target inside of which bearing measure-
ments of a directional antenna lose directionality: signal recordings in all directions
yield similar signal strength. We present a geometric model of this region based on
antenna simulations and data collected with a real system. Our main contribution is
a strategy that takes advantage of a UAV’s ability to change altitude and exploits a
special structure occurring when approaching the target beacon from above to reduce
the flight time required to land near the beacon. We analyze the performance of our
strategy and demonstrate through simulations that by exploiting this structure we can
achieve shorter flight times than our previous work.

1 Introduction

Landing near the source of radio signal (beacons) with Unmanned Aerial Vehicles (UAVs)
has many important applications. In search and rescue applications, beacons can mark the
location of an emergency package delivery like rations and medicine [1], defibrillators [2] and
flotation devices [3]. In environmental monitoring applications, radio-tagging animals can
be used to mark their location [4], [5] and can be a useful wildlife and farm management
tool. UAVs equipped with a directional antenna that can track radio beacons are a good fit
in such scenarios due to their ability to travel fast, reach difficult to access areas and carry
small payloads.

A common technique to locate the area of a target radio beacon using directional antennas
is the triangulation of bearing measurements [6, 7, 8]. There are primarily two ways of
obtaining bearing measurements (directionality). We can either use a single directional
antenna or use omnidirectional, multi-array antennas. In this work we focus on a single
directional antenna. Bearing measurements in this case are acquired by rotating the antenna
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Figure 1: A UAV may be unable to localize a radio beacon with a directional antenna at a
high altitude due to the existence of a cone-like region above the target inside of which we
lose directionality. We name this region No Directionality (ND) region and present a strategy
that utilizes uses binary measurements to detect it (red if outside, blue if inside). We first
detect the ND region by increasing the height and covering an increasing area around the
starting location A. Then we reduce the uncertainty area by lowering the height and reducing
the size of the ND region so that ri < ri−1 and re-locating it.

in place with a fixed angle step and selecting the direction that recorded the strongest signal
[9]. Due to multi-path effects and interference in unknown environments we cannot assume
that the signal strength monotonically increases as we approach the beacon and a full rotation
is required to normalize the recordings [10]. The duration of a bearing measurement depends
on the angle step and the beacon’s number of pulses per second. For example, a bearing
measurement of angle step 10 deg and a beacon transmitting signals at 0.5 Hz requires over
a minute to complete. A UAV able to reach an 18 m/s speed can travel over 1000 m during
that time. In many UAV systems the time spent acquiring bearing measurements can be
orders of magnitude larger than travel time [11].

In this work we take advantage of a UAV’s ability to change altitude and exploit a special
structure occurring when approaching the target beacon from above to significantly reduce
measurement acquisition time (Figure 1). Many studies have used UAVs with directional
antennas in order to determine the area a target beacon lies in [11], [12], [13]. However
in most cases the altitude is fixed and the target is not approached from above. Reducing
measurement acquisition time has been studied recently in [10] where a directional and
omni-directional antennas are used together to remove the need of full rotation bearing
measurements for signal strength normalization. However, the authors do not provide any
mathematical guarantees for localization time and their approach does not take advantage
of a UAV’s ability to change altitude. We show that there exists a region above the target
inside of which bearing measurements with a directional Yagi antenna lose directionality:
signal recordings in all directions yield similar signal strength. We name this region No
Directionality (ND) region. We also show that we can detect whether a location is inside



the region (binary ND measurement) with only four signal recordings. The authors in [14]
mention this region but they explicitly avoid it because their approach can fail when near
the region. Using this special structure we provide a strategy for UAVs to land near a target
beacon using only one initial bearing measurement and ND measurements.

Our contributions can be summarized as follows:

1. We present a strategy that exploits a special structure occurring when approaching the
target beacon from above. Our strategy takes advantage of a UAV’s ability to change
altitude and utilizes this special structure to reduce the flight time required to land
near the beacon.

2. We analyze the strategy performance and show through simulations that in comparison
to our previous work it can reduce the time it takes for a UAV to localize and land
near the target and validate it on a real system.

2 Problem Statement

Our problem, No Directionality (ND) region-based target landing can be formulated in the
following way. We are given an initial measurement angle (bearing) corrupted with an upper
bounded noise α and an approximation of the ND region of a stationary signal transmitter
as being perceived by the receiver. The goal is for a UAV to land on a target area of radius
r∗ such that the total (flight) time is minimized:

min
S
time(S) =

1

‖v‖

N−1∑
i=1

‖si, si+1‖+Nτm (1)

S = {s1, ..., sN} is the set of measurement locations, ‖v‖ is the robot speed which we
assume to be constant, ‖si, si+1‖ is the distance between locations si, si+1 and τm is the
(fixed) time required for taking a single measurement. Since the target beacon is assumed
to be stationary, the landing location does not change over time. We also assume that the
signal can be sensed at all times, if not we can just search for it.

3 No-Directionality Region Modeling

In this section we model the area around the target beacon based on our antenna radiation
field and classify the locations in which we can or cannot obtain reliable directionality mea-
surements. Our antenna operates at the 163 MHz range with a director of 0.84 m length
and 0.25 m spacing, an exciter of length 0.88 m and a reflector of 0.93 m length and 0.26 m
spacing. Using the Matlab antenna toolbox we obtained the electrical field strength around
the antenna for multiple angles corresponding to different locations relative to the target
beacon. For each location we obtained the relative field strength by rotating the antenna in
place while keeping it horizontal with respect to the ground plane. In Figure 2 we present
the electrical field strength for two sample locations. The relative field strength drops as we
increase the altitude and it becomes increasingly difficult to determine the direction to the
signal source.



Figure 2: We observe that for a given altitude the normalized ideal signal strength flattens
out as we approach the target. The electrical field strength shown is an example from
two antenna locations relative to the target beacon for varying altitudes h. We use this
observation to detect whether we are close to the target when at a high altitude.

We use this observation and classify locations based on whether direction to the signal
source is reliable. In Figure 3 we present the results of this classification for various distances
∈ {1, 3, ..., 71}m and altitudes ∈ {1, 3..., 109}m. For each location we obtain four signal
strength values, each with a rotation of 90 deg. A location is labeled “GD” if it provides
good directionality, where the difference between maximum and minimum field strength is
above threshold = 0.0054 chosen empirically based on the real data collection. Otherwise,
the location is labeled as “ND” for no directionality. For each location we obtained the
results for varying angles between the antenna facing direction and direction to the source
∈ {5, 15, 25, 35, 45} deg. The choice of obtaining four signal strength values results in some
of the boundary locations being ambiguous labeled both as ND and GD. We obtain the
boundary line(s) by calculating the largest and smallest angles between the target location
and these ambiguous boundary locations. The result resembles a cone. We refer to this conic
approximation of the ND region as the ND cone with apex angle φ. Our modeling concludes
that for SNR = 20 there is a region (blue) with angle φ ∈ (16.7, 20.3) deg inside of which
we cannot determine directionality. Furthermore, there exists an ambiguous region (red and
blue) with angle θ ∈ (7.1, 15.4) deg inside of which the locations can yield both ND and GD
measurements.

In order to verify that our ND region modeling is useful we collected data with a real UAV
system (described in Section 6). Due to practical limitations we focused on a smaller area
and used a larger grid size. The data were collected for distances ∈ [9, 25]m and altitudes
∈ [19, 44]m. The initial direction between the first recording of each set differed by 40 deg,
which yields the highest possible angle difference. The angles calculated using the real data
were φ = 17.8 deg, θ = 17.4 deg. These results resemble the noisy simulated case and indicate
that our modeling can be of practical use.



Figure 3: Classifying locations on whether they provide good directional measurements
(GD, red) or not (ND, blue) based on expected electrical field strength. The resulting
approximation resembles a cone (blue area) of apex angle φ. At the boundaries of the cone
there exists an ambiguous area of angle θ containing both ND and GD locations. The
ND region with simulated data plot represents two cases. First, the noiseless case where
φ = 20.3, θ = 7.1 deg. Second, adding white Gaussian noise with SNR = 20 results in
φ = 16.7, θ = 15.4 deg. The ND region with real data plot was created with data collected
with a real UAV system and resulted in φ = 17.8, θ = 17.4 deg.



4 Strategy

The strategy can be seen in Algorithm 1 and relies on the conic approximation of the ND
region presented in Section 3. Other than the initial bearing measurement, we only use
binary ND measurements that are much faster and can detect whether we are inside the ND
region. Taking an ND measurement at height Hi, we can determine whether the target’s
ground location is within radius ri = Hi tanφ from the measurement ground location.

Our strategy is split into two phases (see Figure 1) : The goal of the first phase is to
ensure the ND region is detected. At the beginning of Phase 1 there are two possibilities,
either the ND region can be detected at the initial location A or not. If at location A we
do not detect the ND region, then we take more ND measurements at locations near A and
towards the direction of the initial bearing measurement (blue circles in Figure 4). If the
target is not inside the area covered by these measurements, we increase the altitude such
that the ND measurement footprint increases and covers a larger area (red circles in Figure
4). This is repeated until the ND region is detected.

The goal of the second phase is to ensure that the radius of the ND region is at most r∗.
At the end of Phase 1 we have entered the ND region but its radius at its current height
may be larger than r∗. In this case Phase 2 reduces height and follows the boundary of the
ND region until its radius reduces to at most r∗. If at any point during Phase 2 we exit the
ND region while reducing height, then we re-detect it. Re-detecting the ND region is similar
to Phase 1 but since we no longer know its direction, we obtain ND measurements in all
directions.

The inputs to Algorithm 1 are desired landing area radius r∗, direction of the initial
bearing measurement, initial starting location A, ND cone apex angle φ and bearing mea-
surement noise α. In order to provide performance guarantees in terms of task completion
we get the competitive ratio with respect to the optimal offline strategy outlined in Section
4.1. The details of the performance analysis for Phase 1 and Phase 2 while θ = 0 is provided
in Sections 4.2 and 4.3 and complete proofs are included in the appendix. Then we address
the case where θ > 0 in Section 4.4.

Algorithm 1 ND-Region-Landing

Input: r∗, A, φ, α, Initial bearing
Output: Landing location sN

1: Call Algorithm 2 to detect the ND region
2: Call Algorithm 3 to reduce ND region radius to r∗ and determine the landing location
sN

4.1 Lower Bounding the Optimal Offline Strategy

For our analysis we upper bound the cost of the optimal offline algorithm OPT which has
access to the target location and use this bound to compute the performance of our strategy
with respect to OPT. Let OPT start at location A and have knowledge of the target location
C and its corresponding ND region. If A is located outside the ND region then any strategy
has to acquire at least one ND measurement to detect the region and determine that it is



inside the desired area of radius r∗ and at height H∗. In order to obtain this measurement
any strategy has to travel at least L − r∗, where L = ‖AC‖. The total travel cost of OPT
is ≤ L− r∗ which for a constant and normalized travel speed ‖v‖ = 1 is equivalent to total
flight time.

4.2 Phase 1: Detect the ND Region

In this section we show that Algorithm 2 is guaranteed to detect the ND region and analyze
its performance in Theorem 3. In line 1 we acquire the initial bearing measurement, initialize
our travel direction and determine the coverage pattern using Lemma 1. The loop in lines
2-10 doubles the ground and height step sizes and covers the circular sector of the circle
centered at A with radius 2ri and angle 2α.

Algorithm 2 Phase 1:ND-Region-Detection

Input: r0 = r∗, H0 = r∗

tanφ
, A, φ, α, Initial bearing

Output: ND region detection location si
1: Determine the coverage pattern using Lemma 1
2: while ND region has not been detected do
3: Double radius ri and height Hi

4: Based on the coverage pattern cover the circular sector of a circle with radius 2ri
with angle α

5: end while

The problem of covering the area of a circle with a number of smaller circles has been
studied at [15]:

Lemma 1. We need at most q + 1 circles of radius r to cover a circular sector of radius 2r
and angle ≤ 30q deg, where q ∈ {1, 2, ..., 6}. We need at most seven circles of radius r to
cover the entire area of a circle with radius 2r.

Using Lemma 1 we can upper bound the cost of each step of the while loop in Algorithm
2 in the following way.

Lemma 2. Let the approximation of the ND region be a right angular cone with apex angle
φ and its apex point at C such that at height Hi its cap is a circle with radius ri = Hi tanφ.
Let the initial bearing measurement location be A outside the ND region, height Hi and upper
bounded angle noise α < 90 deg. If AC ≤ 2ri then we can get inside the ND region with at
most four steps of total length ≤ 8ri.

The proof uses Lemma 1 for covering a 90 deg circular sector (see Appendix 8.1 for
details). Now we can upper bound the cost of Algorithm 2.

Theorem 3. Let the initial bearing measurement location be A outside the ND region, height
H0 and upper bounded angle noise α < 90 deg. Let the approximation of the ND region be a
right angular cone with apex angle φ and its apex point at C such that at height Hi its cap is
a circle with radius ri = Hi tanφ. Algorithm 2 can detect the ND region with a competitive

ratio of max

(
2L(4+ 1

tanφ
)

(L−r∗) , 4 log2(
L
r∗

)

)
, for r∗ = r0 and L = ‖CA‖.



Figure 4: Detecting the ND region when the initial bearing measurement is at location A
and height H0 with bearing measurement upper bounded noise angle α = ∠B0AB

′
0. If the

target is further away from A than 2r0 then the target is inside the black colored area that
is the circular sector of the circle centered at A with radius 2r0 and angle 2α and we need at
most three more ND measurements (blue circles) to cover it. If the target it is not further
away than 2k+1r0 we increase height until the radius becomes 2kr0.

The proof uses the fact that if the ND region is detected at the k-th iteration then
‖CA‖ = L > 2rk−1 = 2kr0 and k ≤ log2(

L
r0

). The travel distance is upper bounded using

Lemma 2 since 8
∑k

j=0 2kr0 + ‖Hk‖ < r02
k(4 + 1

tanφ
). Th

4.3 Phase 2: Reduce Area of the ND Region

In this section we show that Algorithm 3 is guaranteed to reduce the ND region radius to
r∗ and analyze its performance. In line 1 we determine the size of the area that we need
to cover and how many circles are required for a complete coverage. We will refer to the
number, location and visit order of the circles as a coverage pattern. In lines 2-8 we reduce
the altitude and radius of the ND conic region and attempt to detect the ND region again.
In lines 4-7 we visit each circle according to the coverage pattern until we detect the ND
region again. Once the radius of the ND region drops below the desired we stop and land.

At the end of Algorithm 2 the height is Hk and the last location is ensured to be inside
the ND region. The goal of Algorithm 3 is to reduce the radius of the ND region to less than
or equal to the desired r∗. We achieve this by lowering the height Hi such that the radius ri
of the ND region at height Hi−1 is ri−1 = ri

2
. If we end up outside the ND region at height

Hi−1 then by construction we cannot be further away than 2ri−1. Since the ND region at
height Hi−1 has radius ri−1 we simply need to cover a circle of radius 2ri−1 with cirles of
radius ri−1 (ND measurement coverage area).

Using Lemma 1 we can upper bound the cost of each iteration of the while loop in
Algorithm 3.

Lemma 4. Let the approximation of the ND region be a right angular cone with apex angle
φ and its apex point at C such that at height Hi its cap is a circle with radius ri = Hi tanφ.



Let location A be inside the ND region at height Hi. At height Hi+1 = Hi
2

the ND region has

radius ri+1 = ri
2

. If location A at height Hi
2

does not lie inside the ND region then we can get
inside the ND region with at most six steps (and measurements) of total length ≤ 12ri.

The proof is available in Appendix 8.3 and is similar to Lemma 2. Using Lemma 4 we
can upper bound the cost of Algorithm 1 as follows.

Theorem 5. Let the target beacon be at location C, the initial measurement location be
A such that ‖CA‖ = L. Let the approximation of the ND region be a right angular cone
with apex angle φ and its apex point at C such that at height Hk its cap is a circle with
radius rk = Hk tanφ. Given an initial bearing measurement of upper bounded angle noise
α < 90 deg Algorithm 1 can land near the target beacon within a circular area of radius r∗

with a competitive ratio of max(
2L(16+ 2

tanφ
)

(L−r∗) , 9 log2(
L
r∗

)).

The proof follows from Theorem 3 and Lemma 4. We note that for a total of m iterations
the travel distance is Hk +

∑m−1
j=0

12rk
2j
≤ rk(12 + 1

tanφ
).

Algorithm 3 Phase 2:Reduce-ND-Region-Area

Input: r∗, ri = rk, Hi = Hk φ, θ, α
Output: Landing location sN

1: Determine coverage pattern based on φ, θ angles
2: while ri > r∗ do
3: Halve radius ri and height Hi

4: repeat
5: Determine the next measurement location sj based on the coverage pattern
6: Go to location sj and take ND measurement mj

7: until mj ∈ ND region
8: end while

4.4 Handling the Ambiguous Region

In this Section we handle the existence of locations at the boundary of the ND region that
may result in both good (GD) and bad (ND) directionality measurements (see Section 3).
In this case Algorithm 2 may result in an early detection of the ND region. Then Algorithm
3 may miss re-detecting the ND region after reducing the altitude due to the ND region
location lying further away than twice the ND region radius (Lemma 4). To address this
we increase the radius of the circle we cover in Lemma 1. In other words, we handle these
ambiguous locations with a simple modification of the coverage pattern in the first line of
Algorithm 3. Due to the difficulty of mathematically determining the smallest number of
circles of a fixed radius that cover the area of a circle of an increasing radius [16] we do not
handle the general case. We only handle and analyze a few practical cases.

At height Hi the ND region can be detected at most Hi tan(φ+ θ) away from the beacon
location. This is at most ei = Hi tan(φ+ θ)−Hi tan(φ) away from the boundary of the ND
cone. If we then halve the height (Algorithm 3) we can be at most Hi

2
tan(φ) + ei = ri−1 + ei



Figure 5: An example of our strategy outlined in Algorithm 1 for φ = 15o and θ = 0. The
desired landing area radius is 3 m and the target beacon is located 150 m away from the
starting location. The starting location is at [0,0] with an altitude of 12 m. Phase 1 (blue
trajectory) detects the ND region after 4 steps at altitude 450 m. Phase 2 (red trajectory)
reduces the ND region area (colored circles) until it achieves a radius of 3 m. The blue bold
line is the final area uncertainty.

away from the ND region. Let ratio = 2(ri+ei)
ri

be the ratio between the large and small
circles in the problem of covering the area of a circle with a number of smaller circles. In [17]
it is shown that for ratios that are smaller than 2.246, 2.414 and 2.532 we need at most 8,
9 and 10 circles, respectively. Larger ratios are difficult to determine and require numerical
evaluation [16]. In our modeling we calculated ratio = 2 (θ = 0), ratio < 2.9 (θ = 10) and
ratio < 3.7 (θ = 17). We can evaluate numerically that for ratio < 2.9 we need at most 21
circles and for ratio < 3.3 we need at most 48 circles. For ratio < 3.7 Lemma 4 requires at
most 42 additional steps. This results in the cost of each step in Lemma 4 being multiplied
by a factor of at most 8.

5 Simulations

In this section we show that ND-Region-Landing can provide short flight times when the
goal is to localize and land near a target beacon. Since no other strategy considers the con-
cept of no directionality we chose to compare the total flight times achieved by Algorithm 1
against our previously published Localize-Target-on-Plane algorithm [11] which chooses
the location of bearing measurements during execution so as to localize a radio beacon. In
our implementation we used heuristics to improve performance without hurting our theoret-
ical guarantees. We modified Algorithm 3 to keep track of the intersection area of all the
measurement locations and avoid taking measurements that do not contain the target. We



also modified Algorithm 2 to take a single ND measurement at a higher altitude that covers
the entire area required for each step (we triple the height instead of doubling it). Further-
more, if a measurement lies outside the ND region then it acts as a bearing measurement
and we use the resulting area (quadrant) to further reduce the measurement intersection
area. In order to achieve the same goal both strategies approach the target after localizing
it. Performance evaluation was based on mission time difference over 100 simulations.

We generated 60 sets with varying ND region apex angle φ ∈ {15, 30, 45, 60} deg, target
beacon distance L ∈ {150, 300, 600, 1200, 2400}m and for uniformly distributed measurement
bearing noise with varying corruption α ∈ {10, 20, 30} deg. Figure 6 presents how much
shorter our strategy is when compared with Localize-Target-on-Plane for r∗ = 3 m.
For ambiguous measurement locations that can yield both good and bad directionality we
assumed we set θ = 0 (no ambiguity), θ = 10 deg and θ = 17 deg (calculated in Section
3). A location in the ambiguous region has 50% chance to detect the ND region. Our
strategy performs better as the initial bearing measurement accuracy increases due to Phase
1 ending closer to the center of the ND region. We also observe a decrease in performance as
θ increases, which is expected given the need to cover a larger area in which we need more
circles and thus more measurements. An example scenario can be seen in Figure 5. These
results show that ND-Region-Landing can provide shorter flight times when approaching a
target beacon by exploiting the special structure of the ND region and our UAV’s ability to
change height and approach the target from above.

6 Field Experiments

We validate our strategy with a real UAV system and radio beacon. The UAV we used
was a multi-rotor DJI Matrice 100 with 3.4 kg takeoff weight, about 12 minutes flight time
and a maximum travel speed of 22 m/sec. An RTL-SDR (Software Defined Radio) USB
signal receiver was connected to a 3-element Yagi antenna that can sense and record the
signal emitted by our beacon. Our radio beacon was the ATS F1800 which transmits a pulse
approximately once every two seconds. In Section 3 we calculated the ND region angles with
the real data to be φ = 17.8 deg, θ = 17.4 deg.

We placed the beacon 75 m away from the UAV and used the implementation in Section
5 to get the measurement locations. The input values were α = 15 deg and r∗ = 7 m which
for φ + θ = 34 deg requires a minimum altitude of 10 m (chosen for safety). The resulting
trajectory (chosen for visualization purposes) and measurement locations can be seen in
Figure 7. The UAV detected the ND region at the third measurement at an altitude of 100
m. Then the altitude was reduced and the ND region was re-detected until it was reduced to
a radius ≤ r∗. The final measurement and landing location was 2 m away from the beacon.

7 Conclusion and Future Work

In this work we studied the problem of landing near the source of a radio signal (beacons)
with UAVs. Our main contribution is a strategy that exploits a special structure occurring
when a UAV approaches a target beacon from above to reduce the flight time required to land



Figure 6: Average mission time improvement of our strategy over
Localize-Target-on-Plane [11] for varying ND region apex angle φ, target beacon
distance L (x-axis), bearing measurement noise α. The ambiguous region has size θ and
50% to produce the ND region.



Figure 7: Results from the field experiment for r∗ = 7 m, φ = 17.8 deg, θ = 17.4. The conic
region represents our conic approximation of the ND region. The measurements outside the
ND region are colored red (GD) and the measurements inside the ND region are colored blue
(ND). The target beacon was at 75m distance away from the initial location.

near it. This is important because current approaches can fail when attempting to localize a
target using bearing measurements at a high altitude due to the existence of a conic region
above the target inside of which bearing measurements lose directionality: signal recordings
in all directions yield similar signal strength (ND region). This way we can detect whether
a location is inside the region and the region ground footprint is guaranteed to contain the
target. Then we reduce the uncertainty area by decreasing height and re-locating the region.
Through simulations comparison with our previous work we demonstrate that we produce
shorter localization times and we validate our strategy with a real UAV system.

For our future work there are many venues we can explore. One of the main assump-
tions of this work is that the target is stationary. What if the target is dynamic and the
ND region can move during the measurement acquisition stage? In such cases it may be
more advantageous to obtain more measurements at a higher altitude where the ND region
is larger. Depending on the distance between the initial starting location and the beacon
location Algorithm 1 can result in an altitude that may be undesirable for a practical imple-
mentation. Similarly, the desired uncertainty area may require the UAV to fly at very low
altitudes which may, again, not be desirable. We would like to provide alternative strategies
that can approach and localize the target while reducing the maximum/minimum altitude
that needs to be reached. Finally, we would also like to explore alternative strategies to
handle the ambiguous region and improve the competitive ratio which can become large.
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8 Appendix

8.1 Proof of Lemma 2

Proof. From Lemma 1 we need at most 4 circles of radius ri to cover the entire sector area
of a circle with radius 2ri and angle α < 90 deg. But note that at the previous step i− 1 we
have already covered the area that is covered by the circle center at A and we do not need
to cover it again. Thus we only need 3 circles of radius ri to cover the remaining sector area.
Thus, if the center of the ND region is not further away than 2ri visiting the centers of all 3
circles guarantees that we visit at least one point of the ND region. Traveling to the center
of each circle requires less than 2ri distance since the circles overlap. Thus, we require at
most 3 measurements and 4 steps each of length ≤ 2ri for a total length of 8ri.

8.2 Proof of Theorem 3

Proof. Let the ND region be detected at the k-th step. In order to bound the number of steps
k note that detecting the ND region at the k-th step means that ‖CA‖ = L > 2rk−1 = 2kr0
which implies that k ≤ log2(

L
r0

). Thus, during Phase 1 we take at most 3k ≤ 4 log2(
L
r0

) ND

measurements. Using Lemma 2 Phase 1 travels at most 8
∑k

j=0 2kr0 + ‖Hk‖ = 8r0(2
k−1 −

1) + 2kr0
tanφ

< r02
k(4 + 1

tanφ
) < 2L(4 + 1

tanφ
). Since the optimal strategy OPT takes at least

one measurement and travel L−r∗ (see Section 4.1) the competitive ratio (in terms of travel

distance and number of measurements) is max

(
2L(4+ 1

tanφ
)

L−r∗ , 3 log2(
L
r∗

)

)
for r∗ = r0.

8.3 Proof of Lemma 4

Proof. We define a circle C ′ centered at A with radius 2ri. From Lemma 1 we need at
most 7 “small” circles of radius ri to cover the entire area of a circle with radius 2ri. By
construction, the ND region cannot be further away than ri and thus C ′ contains the center
of the ND region. Thus, visiting the centers of all 7 “small” circles guarantees that we visit
at least one point of the ND region. The centers of the 6 perimeter “small” circles yield a



hexagon that is inscribed inside the center circle. The length of each side of this hexagon
is less than the length of the side of the hexagon inscribed on C ′ (with radius 2ri) which is
4ri sin(30o).

8.4 Proof of Theorem 5

Proof. Lemma 4 gives us the cost of each step and for a total of m steps we travel a total
travel distance of Hk+

∑m−1
j=0

12rk
2j
≤ Hk+12rk = rk(12+ 1

tanφ
) ≤ 2L(12+ 1

tanφ
). The analysis

for the number of ND measurements follows from Theorem 3 and Lemma 4 and results in

6k ≤ 6 log2(
L
r∗

). Thus the competitive ratio for this strategy is max(
2L(16+ 2

tanφ
)

L−r∗ , 9 log2(
L
r∗

))),
where r0 = r∗.


